AD-A240 494 | '
QR

RJ 8180 (75139) June 19, 1991
‘Computer Science

Word Problems - This Time with Interleaving

Alain J. Mayer! Larry J. Stockmeyer
Dept. of Computer Science IBM Research Division
o, g Brown University Almaden Research Center
;Qi} E “r’ Providence, RI 02912. 650 Harry Road
= % L e San Jose, CA 95120-6099

Abstract. We consider regular expressions extended with the interleaving ope .tor, and
investigate the complexity of membership and inequivalence problems for these expressions.
For expressions using the operators union, concatenation, Kleene star, and interleaving,
we show that the inequivalence problem (deciding whet..er two given expressions do not
describe the same set of words) is complete for exponential space. Without Kleene star, we
show that the inequivalence problem is complete for the-class T3 at-the second level of the
polynomial-time hierarchy. Certain cases of the membership problem (deciding whether a
given word is in the language described by a given expression) are shown to be NP-complete.
Special cases of the membership problem which can be solved in polynomial time are also
discussed.

-

| This dovument has been approved |
for public release and sale; its
distiibution is unlimited.

91-08896
ARSI

A . .
"The research of this author was partly susported by”ONR grant N00014-91-J-1613. Part of this work
was performed while the author was at the IBM T.J. Watson-Research Center.

o1 R o8& 028

1 Introduction

There has been considerable progress in classifying the the computational complexity of
decision problems involving “regular-like” expressions. Such expressions are-similar to-the
Kleene regular expressions of finite-automata theory, but may contain operators on sets
of words other than the usual operators union, concatenation, and star. Problems which
have been studied include inequivalence, i.e., deciding whether two given-expressions do not
describe the same set of words, and membership, i.e., deciding whether a given word is in
the language described by a given expression. Previous work on this subject can be found,
for example, in [Furer80, Hunt73, HRS76, Stock74, StM73]; see also [AHU74, HU79]. In
particular, we focus here on the interleaving operator. The intezleaving of words z and v,
denoted z|y, is the set of all words of the form

1Y1Z2Y2 - - TkYk

where k > 0,z =z2122...Z%, ¥ = ¥1¥2.. . Yk, and where the words z; and ;, 1 <1 < %, can
be of arbitrary length (including the empty word).

The motivation to investigate the interleaving operator is twofold. First, the interleav-
ing operator can be interpreted as the simplest case of the composition operator used i
algebraic approaches to modeling concurrent computation. Interleaving represents the case
where processes run concurrently in such a fashion that their atomic steps can be arbi-
trarly interleaved but where no communication between them takes place. Cre of the best
known formalisms for specifying and verifying concurrent systems is CCS {see [Miln80]).
In [Miln84] a restricted set of algebraic operators {i.e. {-,U,=}) is used to form the star
ezpressions in CCS. These expressions are syntactically identical to regular expressions,
but instead of having as semazntics “sets of strings”, their semantics is “equivalence claszes
of processes”. In [KS90] it is shown that the observational equivalence problem of star
expressions is solvable in polynomial time. We believe that the techniques presented in this
paper will be useful to determine the complexity of the cbservational eqnivalence problem
of star expressions extended by a suitably defined composition operator. This is an cpen
question of [K590).

Secondly, as we discovered while doing this work, the interleaving operator has some
interesting properties of its own: Succinctness: The use of the interleaving operator can
shorten a regular expression by an exponential amount. Simulation of Integer Addi-
tion and Intersection: Under certain format restrictions, addition of positive integers
and intersection of expressions can be simulated by the use of the interleaving operator.
Complexity: The inequivalence problem for expressions with interleaving, but without
star, is one of the few natural problems known to be 3-complete.

We now outline the remainder of the paper. Definition are given in Section 2. In
Section 3, we present a language for which a succinct expression with interleaving exists but
every regular expression is longer by an exponential factor. Section 4 illustrates the nature
>f the interleaving operator via the membership problem restricted to expressions containing
1 constant number of interleavings. In Section 3, we show certain cases of the membership
problem to be NP-complete. One such case is the problem of determining, given words
z.uy,...,tn (With n variable), whether z can be written as an interleaving of uy,...,us.
Sections 6 and 7 are devoted to the inequivalence problem for expressions without and

Statement A per telecon
Gary Koob ONR/Code 1133
Arlington, VA 22217-5000

A

DTIC

cery
INSPECTED
[

v Codes
z.dfor
J[J:Ciai

|

|

NWW 9/16/91

!

e’ 4

Ry

with tae Kleene star, respectively. In the case without star, we show that interleaving is
powerful enough to sitaulate addition of integers urder certain format restrictions. We can
then emulate a proof of [Stock77] to show that the inequivalence problem is £3-complete.
In ike case with star, we shew that interleaving can simulate intersection, again under
appropriate format restrictions. We-can then emulate a proof of [Furer80] to show that the
inequivalence problem is exponentiai-space-complete.

2 Definitions

Basic familiarity with regular expressions, time and space complexity, polynomial-time re-
ducibility, and complete problems is assumed. The necessary background, if needed, can be
found in [AHU74] or {HU79}, for example.

We now define more precisely the types of expressions and problems of interest. Let ¢
denote the-empty word. Let ¥ be a finite alphabet and let § be a subset of the operators

{U,-,%,0,]}. We define the S-ezpresstons (over L) and simultaneously define the operator
L -which maps each S-expression to a subset of Z*:

1. For every o € ZU {¢}, o is an S-expression, and L(c) = {g};

12

. If y and 7, are S-expressions and @ € S ~ { =}, then (r1 @ r2) is an S-expression,
and L{{71 @ r2)) = L(n1) @ L(r2);

(1)

. {7 is ar S-expression, ther (7*) is an S-expression, and L((r*)) = (L(r))".

In 2, the interleaving operator is extended to sets of words in the obvious way, i.e., [i|L; is
the union-of the sets wy|w; taken over all wy € L; and wy € L,. When writing expressions
in the text, ext-aneous parentheses are often omitted. Although it is sometimes convenient
0 use ¢ wh~n writing expressions, our results do not change if expressions cannot contain
€.

Letting S be as above, the problem MEMBER-S is the problem of deciding, given an
S-expression 7 and & word w € £*, whether w € L(r). The problem INEQ-S is the problem
of deciding, given two S-c~yressions r; and r2, whether L(r;) # L(r2). The problem NEC-$
is a special case of INEQ-S; here the problem is to decide, for a given r, whether L(r) # L°.

|w| denotes the length of the word w, and Ir| denotes the length of the expression r.

[t will be useful to define | also as an operator on nondeterministic finite automata
(NFA’s) M; and M3 in such a way that L(M | M) = L(M;)| L(M2). Here is the relevant
definition (see Eilen74]):

Let M. =(Q:,Z,&, 700, £1) (i = 1,2) be an NFA with (in notation of [AHUT74]) state
set Q,, input alphabet T, transition {unction 6, initial state zqg,, and accepting states
F.. Then M = M, | M is defined as follows:

M = (Q) x Q2,Z,6,[pn, poz], F) where the new transition relation § is defined as
é(la1,92l,2) = (65(g1,2) x {g2}) U ({@m} x 62(g2,2)), and the new set of accepting
states F is defined by F([a1,92])) = Fi(q1) A Fa(g2).

Note that the number of states of My | M2 is the product of the number of states of M
and the number of states of Ms.

[3%]

s

3 On the Expressiveness of Interleaving

In this section, we will show an example in which the use of the interleaving operator
shortens a regular expression by an exponential amount. Consider the alphabet I, =
{01,02,...,0n} and the language L, of all permutations of length n in L}, i.e., Ln is the
set of words of length n in which each symbol o, appears exactly once. Obviously, we have

Ln = L(oy|oz|. .. |on). But as the following proposition shows, there is no standard regular
expression of polynomial length denoting L.

Proposition 3.1 Every {U,-," }-ezpression r with L(r) = L, has |r| = Q(27).

PROOF: For § C Z,, let the word w(S) be the concatenation of the symbols in S in order
of increasing index. Let S denote the complement of S with respect to .. Note that for
any S, w(S)w(S) € Ln. We claim that the number of subsets of £,, namely 2", is a lower
‘bound on the number of states of any NFA accepting L.

Assume that there is an NFA M with fewer states. Then there are two subsets § and
T with § # T and a state g such that there is-a computation path of M on input w(S)
from the start state to g, a path on input w(T) from the start state to g, a path on input
w(S) from ¢ to an accepting state, and a path on input w(T) from ¢ to an accepting state.
Assuming (without loss of generality) that S is not a subset of T, there must be a g; in §
which is not in T, so o, is in T. Therefore, M accepts the word w(S)w(T) which contains
two occurrences of ¢,. Thus any NFA accepting L, must have at least 2" states. Since

any regular expression r can be converted to an equivalent NFA having O(|r]) states, the
proposition follows. G

4 Example: Interleaving of a Constant Number of Strings

To illustrate the interleaving-operator we show how to answer the followizg question in a
straightforward way: z € L{u; | u2 |...| ux) ?, where £ is a constar | {1 i<k)andz
are strings over some alphabet £, and [z = n» and |z| = &n.

1. Construct the NFA M for uy | w2 |...]| uk. Its transition diagram will beannxn...xn
(k times) grid of states. Thus we can think of it as a k-dimensional hypercube of side
n. Assume that the start state is at the “upper left” corner and the only accepting
state (s,) is at the “lower right” corner. Every state has at most £ successors, each
of which has one coordinate closer to s,. Thus there are O(n*) states and O(n*)

transitions. Note that every path from the starting state to the accepting state has
length £n.

(3]

Let S be a set of states. Simulate M on input z by storing in 5 the states which W
can reach after reading the prefix of z consumed so fai. After reading at most kn
symbols one of the following two conditions will become true: (i) S = {} and thus
REJECT or (ii) S = {s.} and thus ACCEPT. Note that the size of S can be at most

O(n*~1), since there are at most O(n*~1) states at distance ! (1 < I < &n) from the
start state.

It can be easily verified that the-above procedure can be carried out using O(n*) .ime and
O(n*~1) space on a unit-cost RAM. In [vLN82] a dynamic programming algorithm was
used to:improve the time performance to O(n*/log!/(*~1n). This was further improved
by [IPC85] to O(n*/ logF/t*=1 1),

This result is easily generalized to the followmg.

Theorem 4.1 For each constant k, the problem MEMBER-{U,-,«,|}, restricted to ezpres-
stons having at most k occurrences of -|, can be solved in polynomial time.

PROOF: Given a word z and a {U, -, *, | }-expression r, there is an NFA having O(|7|*) states
which accepts L(r). The NFA is constructed as in [HU79, Chap. 2], where intetleavings are
handled by the construction described-in Section 2. The NFA is then simulated on input z
as described above. a

5 Instances of MEMBER which are /P-Complete

The problem MEMBER-{U,-, *x,Nn} is known to be solvable in polynomial time (see the
solution to Problem 3.23 in-[HU79]). We show in this section that the problem MEMBER-

{U,-,%,0,|} is NP-complete. In fact, we will prove an even stronger result by showing that
the following problem SHUFFLE is N'P-hatd:

An instance of SHUFFLE consists of n + 1 words z,u3,...,u, for some n, and the
question is whether z € L(uy |...| un).

(This is the problem of the last section where the number of stiings (%) can be variable.) We
also show that MEMBER-{U,-,N, |} is NP-hard even if | is used only once in the expression.

Theorem 5.1 MEMBER-{U,-,=,0,|} is N'P-complete. The zroblem remains N'P-hard
even if only {-,,} are used in the ezpression, or if {U,-,N,|} are used in the ezpression end |
eppears only once. Also, these prodlems remain N'P-hard if cn ciphabet £ of size 3 is used.

We will now prove this theorem by a sequence of lemmas.

Lemma 5.2 SHUFFLE is NP-hard.

PROOF: We will prove this lemma by doing a reduction from the well known N P-hard
3-dimensional matching problem:

Given disjoint sets W = {wy, wa,...,wy}, X ={z1,22,....27} Y =iy, 92,050
and given aset M C W x XxY, say M = {my, ma,...,m:, does M have a matching?

L.e., does there exist a set M’ C M in which every element of I U X UY appears
exactly once?

Let ¢ be a symbol not in WU XUY. We will construct strings z,p1,..., 2% over the
alphabet T =W U X UY U {c}, such that

€ Llgy | p2| ... | pe) iff M contains a matching M".

We will use the following notation: f;(i) (1<7<3,1<i< k) denotes the index of the
jth component of-m;. Define n(w;) (n(z;),n(y,)) to be the total number of occurrences. of
the element w; (z;,7;) in all of the elements of M.

Now- define:

Bi = Wa) T @) Vi) ©
r=plpa | ek

— n{w)=1_ n(w)-1 a(yq)=1 k—
ZE=WW2 ... WqT122 -.. TqY1Y2 ... YgcT 0] wz(___yq(yq) ck-a.

(1) M contains a matching = z € L(r):
Let M’ be a matching. Let g(i) (1 < i < q) denote the-ith element in M'. Since M'is a

matching, there is-a way to interleave Bg(1)r- - Hg(q) L0 obtain the first 4¢ symbols of z.
The rest of z can be trivially obtained.

(2) z € L(r) = M contains a matching:
The only way to choose the interleaving to obtain the first 4g symbols of z is to interleave
q whole p’s. The corresponding elements of M thus form a matching. o

Lemma 5.3 MEMBER-{U,-,n,|} is NP-hard even if | appears just once in the ezpression.

Proor: We will prove this lemma by doing a reduction from the well known NP-hard
problem 3SAT. Assume-that we are given a formula C = {¢y,ca, .. .,Cm} as a collection of
™ clauses-on a finite set {vy,v2,...,v,} of variables such that =3 (1 <i<m).

We will use the following notation: p; (1 < i < m) is the set of indices of the variables
appearing positively in ¢,, and n; (1 < ¢ < m) is the set of indices of the variables appearing
negatively in c;.

We construct a string z and an expression r over the alphabet £ = {v1,v2,...,v,} such
that

z € L(r) iff C is satisfiable.

Let C; (1 < i < m) be the regular expression defined as follows:

Co=UJ(E-wue™ u (Tue)-(|J w)-(Suen).

k€n; lep;

Thus €. N (Z Ue)™ contains exactly all words of length at most 7 in which (1) at least one
symbol whose index is in n, does not appear, or in which (2) at least one symbol whose
index is in p, 2ppears. Now let r be defined as:

r=(Cln02n...nCm)|(EUe)"
and z as:
Z=0NVUz... Up.

(1) C is satisfiable = z € [(r):
Let T be a satisfying trutk 1ssignment for C. Let the partitioning of z be such that the

symbol v; belongs to the LES of “|” iff T(v;) = 1. In other words z = z1y; ... Zxyx, where
I = 71Z2...Zx is exactly the sequence of z2ll variables true under T in ascending order.
Since T is satisfying, we krow that for all i (1 < 7 < m) the word z (with |z| < n)-either (i)
contains at least one symbol with index in p; or (ii) does not contain all the symbols with
index in n;. From this it easily follows that z is an element of every C, (1 < i < m)and we
are done.
(2) z € L(r).= C is satisfiable:

Let the partitioning of z, by which its membership in L(r) is shown, be z = zyy1 ... T Y-
Thus the word z = z1z3... zx is 2 member of every C, (1 < i < m). Thus we can define a

truth assignment:
N_J) 1 Hyjez
T(UJ)_{O ifv;éz.

T obviously satisfies every clause. a

Lemma 5.4 In Lemmas 5.2 and 5.3 we can use an alphabet.of size 3 instead of an aiphabei
of variable size.

PROOF: We code all symbols involved in the following way. Let & be 2 one-to-one mapping
from T to the positive integers. Then we can code every ¢ in T as “&1%:(2) &”. Cor-
rect interleavings are now interleavings in which blocks representing one symbol are never

separated. It is easy to see that correct interleavings are uniquely readable and incorrect
interleavings can be easily detected. a

We now prove the A'P upper bound.
Lemma 5.5 MEMBER-{U,-,=,N,]} is in N'P.

PROOF: Let z be a word in I° and let E be an expression over £. e define 2 “proof”
that z € L(E) recursively as follows. First, if z = ¢, then the symbol ¢ is a-proof of (z, E) if
¢ € L(E). In the remaining cases, we assume z # ¢. (i) I z € £, then z is a proof of (z, z);
(ii) if P, is a proof of (z1, £1), P is a proof of (23, E2), and z = z; - 23, then (2, P - P2)
is a proof of (z,(E; - E2)); (iii) if P is a proof of (z, E) then P is a proof of (z,(EU E'))
and of (z,(E' U E)) for any expression E'; (iv) if P; is a proof of (z, ;) and P, is a proof
of (z, E2), then (z, Py N P2) is a proof of (z,(By N E2)); (v) if P is a proof of (21, Ey), P2
is a proof of (22, E2), and z € [(z;]z2), then (z, P [P-s) is a proof of (z,(£] E2)); (vi) if
z=1123...2 for some £ > | and words z, # ¢ for 1 <i < %, and if P, is 2 proof of (z, E)
for1<i g k, then (z, Py,..., P.) is 2 proof of (z,(E")).

Let Q be the relation Q(Z,b P) iff P is a proof of (z, E). The question “¢ € L(E)?"
can be solved in polynomial time. Since also the question ¥z £ [(z1{:2)?" can be solved
in polynomial time (see Section 4), it is easy to see that @ can be computed ir polynomial
time. By induction on the structure of E it is not hard to veriiy that, if P is a proof of
(z, E) and z £ ¢, then |P| < 2jz|] E|. We illustrate the induction step for case (vi) (star):

[Pl < |z|+k+2+Z|P;]

i=1
< |=l+E +*2 + i 24zi|| E] by induction
< 2z}+2+ 2|zi|¥3| since k <[z]and z=z2;...2
< 21z[(JEf+3) sircez] >1
= 2lzlI(E7)}-
Now we can write z € L(E)iff (3P : Q(z, F, P)). It follows that the membership
problem belongs to NP. o

Lemmas 5.2 - 5.5 prove Theorem 5.1

6. Inequivalence for Expressions without Star

There are few natural problems known to be complete in the class I of the polynomial-
time hierarchy [Stock77]. In this section, we add another problem to this list by showing
that INEQ-{U,-,|} is T3-complete. The proof wiil make use of the-fact that interleaving is
powerful enough to simulate addition of:positive integers.

Theorem- 6.1 INEQ-{-,U,|} is Z5-complete.

PrROOF: We will prove this theorem in two parts. First that the problem belongs to L5,
and then that it is T5-hard. Both parts of this proof are similar to the proof that the
inequivalence problem for integer expressions is £3-complete {Stock77].

Membership

By induction on the structure of E, it is easy to show that, if Eis a {U,-,;}-expression-and

z € [(E), then |z] < |E|. Let the notion of 2 “proof” and the predicate Q be defined zs in
the proof of Lemma 5.5. Ther we can write:

(B1, B2) € INEQ{U,-, [} iff {Zz: (3P : Q(z, By, P1)) —=~(ZP2: Q(z, Bz, P2)))-
Standard manipulation-of quantifiers and The.cem 3.1 of [Stock77] imply now that INEQ-
{U,- |} is in Z5.

Hardness

We first show that, using-certain format requirements, we can simulate addition of positive
integers by interleaving.

Leta,z, for 1 i< a+1and] < %< m, be positive integers. For each Z, let sz be
the sum of a; x for I £ i <n-+1. Let £ be-the expression:

E = 9 .5.1%3 5 ... [%m .5 |

LRSS LTINS LY

JenFli L. |9nE2 L f L., [Cndlm L f

-3

Let R be the set of words over alphabet {1,5} such that every block of consecutive b’s has
length at least n + 1.

Lemma 6.2 L(E)N R contains the single word 131 - 7+! . 133 . pnF1 ... 3m patl

PROOF: Fora word in L(E) the only way to build n+1 consecutive &’ is to first interleave all
leading 1’s from all n+1 arguments of the interleaving operator (i.e., 1941, 1921 .. 1%n+L1),
and then all first b’s-of the arguments, etc. a

We now show the desired-hardness result by doing a reduction from { B2 N DNF), which
is shown to be I3-hard in {Stock77, Wrath?7]. An instance of (B, 1 DNF) is a Boolean
formula G(X3, X2) where X, (j = 1,2) is a set of variables {z,),z,2,...,z;n}, and where G
is in disjunctive normal form, i.e., G = C;VC2 V...V Cnm, where each Cy is 2 conjunction of
literals; the question is whether 3X;YX2(G(X1, X2) = 1). We can assume that a variable
and its negation do not both appear in the same clause.

In_ order to show the I3-hardness of INEQ-{-,U, |} we will construct expressions £:, Ez,
and R such that

YX13X2(G(X1, X2) = 0)

iff (1)
L(E;CR) C L(E2UR).

Letting R be defined as in Lemma 6.2, the expression R will have the properties that
L(R)Nn R =9 and L(E;) = R C L(R). It is easy to verify that these two properties imply
that

L(EyUR)C L(E2UR) iff L(E})NRC L(E)NR.

Therefore, to prove (1} it suffices to show

YX12X2(G(X1, X2) = 0)
i
L(E:)~RC L(E)NR.

Let us first define R. Since 2ll words in L(£1) are bounded in length by 3f := *E;], the
{ollowing will do:

R = ((BUulue)™-1ve)-b-bUe)t-(1-(sulue)uc).

-
ym—

Let [...] be 11 if the expression-in the brackets is true and 1 if iv is false. Let ..., be the
opposite.
The expression E; is now:

By = (zucCij-d-izu S0yt 211 € Cmy-5
[B] !:-::;5 € C[] b -[“Iu = C’.’i L REE ’:"'521 = C'r; 'E") i
interleaved with similar subexpressions for =y2,...,%x |
lnvl . h- ‘n+1 ehees lr.-i-I L=

s

(The last subexpression contains m repetitions of 1°+2 - 4.)
~ Let Fbe (1UI2UTPY...UI™).
The expression E; is:

E = (za€C)-b-[za1 €Co)-b-- [z21 € Cm] - b

Ul>z21 €Ci]-b-[-z21 € Ca)-b -+ [=z21 € Cr} - 5)]
interleaved with similar subexpressions for z22,...,22a |
F-5-F-b---F-b

If we now restrict the words in L{E;) and L(E7) to be in R, we can use Lemma 6.2 to
conclude that all words in L(E;) N R and in L(E2) N-R are of the form

y= " _b.'x+1 .19 .bn-i-l cel I0m . bn+1_

It is useful to write numerical expressions for the numbers si, 1 < £ < m. For words in.
L(E;)N R, the express.ons are functions of 0-1 valued variables p;, for ! < { < n. Setting
71: = 0 (tesp., pii = 1) means that we choose the LHS-(resp., RHS) of the :th union in E;
t0 produce the corresponding word in L(Ey) N R. We also interpret {..., 2s being either 1
or 2 (as opposed to 1 or 11). Now y £ L(E;) N R iff there are p;, € {0,1} such that, for
1<k<m, :

1 3
Sk = Z((l - pi)[zii € Ci] + puif=zi € Cr]) + (£ 1).
=1}

The numerical expressions for words in L(E2)N R involve 0-1 valued variables o, which,
as above, indicate whether the LHS or RHS of each union in E3 is used. These expressions
also involve variables f; for 1 < £ < m, where 1 < fr < 22 for all %; here f; indicates
which word -is taken from the kth occurrence of F in Ea. Now y € L(E7) N R iif there are
22 € {0,1} and jz € {1,2,...,2n} such that, for 1 <% <m,

sz =) ((1 - p2)lz2 € Ca} + pauf-z2: € Cif) + -
=1
We now czn, as in {Stock77], identify four facts about E; and £5. The following termi-
nology is used. If X is a set of variables, an X-assignment-is an assignment of truth values
0 the vaziables in X. We say that an X-assignment ¢ Z:ils the clause C; if either some
literal = appears in Cx and z is assigned value jalse by c or some literal == appears in C:.
and = is assigned value irze by .

(2) Foreach vy € L(EY)NR, 22 +1 < sz < 3n+1for 1 <2z < m;and there is 2n
Xi-assignment such that, for 1 € £ < m, sz = 3a + ! iff the 2ssignment does not kill
Cs.

(b) For each X;-assignment thereisa y € L(E;)N R such that, for 1 € £ < m, sz = 3n+1
iff the assigninent does not kill C-.

(c) For each y € L(E2) N R there is an Xz-assignment such that, for I € = < m, if
sz = Jn + 1 then the assignment kills C;.

(d) Let Az be an X»-assignment and y be a word over {1,5}" having the form 1°t - 5"¥! -
1) - 5% such that 2n +1 < sp < 3n+1 and (sx = 3n + 1) = (A2 kills Cx) for
1<k<m. Theny € L(E)NR.

The proofs of (a)-(d) are not difficult. In each case, we must draw a correspondence
between 2 truth assignment and 2 word y. As just noted, each word corresponds to values
for the 0-1 variables py, or p2,. The correspondence between these variables and the Boolean
variables in G is that p;, = 1iff z;, is assigned value true. We illustrate this for (2), leaving
the other cases to the reader.

Let y € [(E)) N R. Since each expression {..] is either 1 or 2, it is obvious that
2241 < s £ 3n+ 1 for all k. Consider the X;-assignment obtained from y via the p;,
as just described. Note that sx = 3n + 1 iff “2” contributes to each of the n terms of the
sum. Suppose that zj, € Ci. Then [z;, € Cij has (integer) value 1. Thereiore, the 1th term
contributes “2” to the sum iff p;; = 1 iff =y, is truze. Similacly, if =z1. € Cx, then the ith
term contributes “2” to the sum iff p;, = 0 iff =y, is false. It follows that s = 3n +11ff Cx
is not killed.

. Remember that our goal was to show

‘-‘J'X;EX:(G(XI, X2 = 0)
it
L(ENRC L(E)NR.
Since G(X;, X2) = 0iff all clauses are killed, it is easy to prove only if” from (2) and (d),
while “if” follows from (b) ard (c). As noted above, this proves (1). Finally, from (i) we
have)
':'X;V Z(G(IY[,JYQ) = l)
iff -

L(E; U E; Uﬁ) = L(EzU?Z).

t)

7 Inequivalence for Expressions with Star

Let EXPSPACE denote the class of decision problems solvable by deterministic Turing
machines within space ¢* for some constant €. The problem NEC-{y,-, =N} is known
0 be EXPSPACE-complete. This was fizst proved by Hunt ‘Hunt?3' who also proved
that this problem requires space cv® for some constant ¢ > i. The proof was simplified
Sy Fiirer Furer30] and the lower bound was improved to ¢*. Ve show in this section
:hat EXPSPACE-completeness of NEC and INEQ holds also if the intesection operaior s
replaced by the interleaving operator.

Theorem 7.1 INEQ-{-,U, =, i} ead YEC-{-,4, |} 2rs EXPSPACE-zzmpiete.

10

PROOF:

(1) INEQ-{u, -, =,|} € EXPSPACE.
Given {U,-,=,|}-oxpressions E; and E; of length at most =, it is easy to build NFA’s
My and M, with O(2") states which accept L(E,) and L(E3), respectively. The product
construction of Section 2 is used for |. Using the simuiation method described ia Section £,
it is easy to show that equivalence of NFA’s can be decided by a nondeterministic Turing
machine within space proportional to the size of the NFA’s (Thm. 13.14 of [HU79] uses a
similar proof).

(2) NEC-{u,-, =, [} is EXPSPACE-hard.

Fiirer proves in {Furer80] the EXPSPACE-hardness of NEC-{U, -, =,N} by doing a generic
reduction from an exponential-space Turing machine. This proof will serve as a basis for our
proof. We will show that by adding new format requirements for words describing accepting
computations we can simulate the intersection operator by the interleaving operator.

The key in Fiirer’s proof is that the there is a succinct (i.e., its length is O(n)) expression
with intersection r. which describes the langnage P, = fwyw™:w e [*,|uwj=n,7€ T},
where T is a finite alphabet and where w™ denotes the reverse of w. r. can be defined
inductively as follows:

.’o=r
g =C-n-T N U7 T"-7

Thus 7 contains n nested occurrences of “N”. We now chow that we can describe a
language similar to P, by an expression which contains 2 nested occurrences of “§”, provided
that words are required o have a certain restricted format. Let I' = i f-,...,' }. Letcbe
asymbol notin I'. If w = wiwq...w, where u; € T for § € : < =, ard if Z is 2 positive
integer, then

Also, %) = £. Letting A be 2ny language over T, define A% = {ws™ : we A}.
Words having the required format are in the set R*) defined as:

R = (0°)®) = (v U...u 77)c*).
Let the expression s.. be defined inductively 2s follows:
30 = [-z

3.5

.

=0 g% g BT [(Upgp v oo {T-2) - 70 2)

Yote that the fength of s, is O(5°).

Ve now claim that tho-=e words in 5, which are restricied 0 b2 in R-575 sescribe 2
language similar 10 the one described by ;. This will be proved in Lemma 7., {ollowing
two preliminaiy lemmas. The first lemma follows immediately from the definition of the <;.

™™

Lemma 7.2 §we L(s,), then w= ¢ jor somev & L zndys(CLizy.
Frs

i1

To state the second lemma, we reed a definition. If w € (T'U {c})*, let M(w) be the
maximum length of a subword u of w such that u € I'* U {c}*. Note that if w € L(y]2),
then M(w) < M(y) + M(z2).

Lemmae 7.3 If w € L(s;), then M(w) <j+ 1.

PROOF: The proof is by induction on j. The basic j = 0 is obvious. Assume the lemma is
true for some j. To prove the induction step, let w € L(s;+1). Then w € L(y|z) for some

y€ L(T9*1. o+t 5; . T3 o+1) and 2z € L(U,epy e (Te)" -7 c).

By Lemma 7.2 and the induction hypothesis, M(y) < j + 1. It is obvious that M(z) = 1.
So M(w)<j+2. o

We can now prove the connection between L(s;) and P,.
Lemma 7.4 L(s;) N RO+ = (P,)U+1),

ProoF: Our proof will be by induction on j.

Induction Basis: If j = 0, then L(so) N R =T .c = (Po)V).
Induction Hypothesis: L(s,) N RUTY) = (p;)0+1),

Induction Step: We want to show that L(sj41)0 RU+2) = (P,4,)0+2). It is easy to see that
(P;+1)9%2) C L(s,41)N RU*D, 50 we only show the opposite inclusion. Any word-in RU+2)
is made of “chunks” consisting of j + 2 identical symbols of ' followed by 7 + 2 ¢’s. Let
zyz € L(s,41) N RO*2) where z is the first chunk, z is the-last chunk, and y is all chunks
in between. Using Lemma 7.2, the first and the last chunk, z and z, must result from the
interleaving of [7*! . ¢?*! and - c. Moreover, since the same ¥ must be used for both z
and z, we have z = 2. The word y must result from the interleaving of some ¥’ € L(s,)
and (- c)*. From this and Lemma 7.3, we can conclude that only those words ¢y’ € L(s,)
which are also in RU*Y can be used to form a word in RU*2). By the induction hypothesis,
y' € (P,)0*D). Since y is a concatenation of chunks, it follows that y € (P,)0*?). Since
z = z, it follows that zyz € (P,H)(J“""). o

We now describe the reduction. For.simplicity, we do the reduction from a deterministic
one-tape Turing machine M with space bound 2™ — 3. The extension to general exponential
space bounds is straightforward. Let M have tape alphabet T, state set S, accepting states
P, and start siate go. Let z be an input to M, and let n = |z] and m = 2% — 1. Let
ip = TU(SxT)U{8}. AnID of M is a word of length m in (Zip)" of the form Su(g, a)vS
where uv € T"; this ID means that the string uowv is written on the tape, and 3 is in state
7 scanning the symbol «. (This representation of ID’s is slightly different than the one used
in [Furer80], but it is convenient for our purposes.)

As in [Furer80], we use “marked binary numbers” to index ihe symbols of an ID. A
marked binary number is a word over the alphabet {0,0,1,1} in the language described by
the expression (0U 1)*10*U0"; i.e., the rightmost (lowest order) 1is marked, as well as all
0’s to the right of this 1; and in the representation of 0, all 0’s are marked. For integer j

12

with 0-< j < m, let?[j] denote the length-n marked binary representation of j. The marking
allows the successor relation to be tested locally as follows. Define succ(0) = succ(Q) = {0,1}
and succ(1) = succ(l) = {1,0}. Hyn...31 =[j) and z = 2,... 21 is a marked binary number
of length n, then z = [j-+ 1 mod 2" iff z; € succ(y;) for 1 < j < n.

Let & = Zip U{0,0,1,1,#,&,c} and T = & ~ {c}. The accepting computation of M
on input z, provided that it exists, is represented by the following word a € £*:

a = (ql)(n+l)

where

d = &OR#0&N e 1]&[a2 ...
oo M) ey [m] &[0 #10) & (1) a2, [1) & -.. (2)
oo [P agm] & 012 # (0] & (1) 231 (1] & ..

oo (MR agm [m] &{0) #(0) &

where a; = @{18i2...0¢{mis the ith ID in the computation of M on input z. (In [Furer80],
the word a’ is used to represent an accepting computation.) We say that a word a € £* has
the correct framework if ¢ = (a’)(““) for some word a’ as in (2), where ¢;,; = aim = 3 for
1 <1< k, but where the symbols a,,, for 1 <i < k and 1 < j < m, can be any symbols of
Zip-

We now simply have to enumerate the mistakes which imply that a word is not a
computation of M on input z. Each type of mistake is duscribed by an expression. Letting
E; be the union of these expressions, ‘it follows that L(E;) # L* iff M accepts z. The
length of E; will be O(n?). The following enumeration of mistakes was chosen to highlight
the more interesting and original parts of the construction. For example, we consider “not
having the correct framework” to be a single type of mistake, even though this could be
broken down into several types of lower level mistakes.

0. The expression Eo describes all words not in R(*#1),

1. When restricted to words in R(®*1), the expression E; describes all words which do
not have the correct framework.

2. When restricted to words having the correct framework, B, describes all words such
that a; is not the initial ID of M on input z (i.e., ¢; # $(go,%1)%2...5, B™ ™28
where B denotes the blank tape symbol), or such that no symbol of the form (g, «)
appears where ¢ is an accepting state.

3. When restricted to words having the correct framework, E3 describes all words which
have a “computation error”, i.e., words such that some a,4+;,, with 1 < j < m does
not follow correctly from a;,-),¢i,,aij+; by the transition rules of M.

We first describe E3 in detail, since it is the more interesting part of the construction.

Let f : (E1p)® — Zip be such that, in any correct computation, a;+1,, = f(@1,;=1,084,5,8s,41)
; . (n+1) ;

forall 1 <1< £ and 1 <j < m. All such occurrences can be found, because a;,';+)is to

13

the left of ([j])("“),ragf{,lj) is to the right of ([j]#)(®*)), and there is exactly one block of
#’s between them. Thus the relevant part of a word representing an accepting computation
must look as the following;:

(1 = DR - (a5)P4V ([= 1D gl
(U]R)(n-}-l) . (a;,_,)("'*'l) . ('[j])("“) _&(n-i-l) ,
(I + 1R - (a3, 42)(HD) - (f + 1D gl

#(n-i-l)
1R+ - (@i, 1)+ - ([n D)

Now we can construct an expression similar to the one in Lemma 7.4 to denote all wrong
computation steps. Let p,., ¢ be symbols in Zp, corresponding to a;,-1, @i;, @i+,
respectively.

to(§) = (T-c)**! - &c (T = {#}) o) #-c-((T = {#})
tar(§) = (DI*1 -2 4,(6) - -7 | (Uyer7-¢- (T)" -7+ c).
As in the proof of Lemmas 7.2-7.4, the following can be proved by induction on j.

Lemma 7.5 w € L(t,(€)) n RO*+Y iff there ezist words z € [7, u € ™, and v,y €
(T = {#}), such that w = (zuév#y)0+,

Now E; is the union, over all g, v, € € Zyp, of:
oo #(n-hl) L pant+end2 | (nti) ta(€) (S0 = { F(£,2,€) })(n-fl) LT

As mentioned, Eo denotes the mistake of a word not being in L(R(**Y). We split Eo
in four categories, i.e., By = Uj=1 Eo,. Eo1 (Eo2) takes care of the case of a block being
too short (long), Eo3 describes the case where not every other block is composed of c’s, and
FEo4 describes words which start and end wrong:

Eot =Uses(eU(Z* - (E = {o}))) -0 -{cUe)* ! - (¢U((T - 10})- T7))
Eor = Uyen 5072 -

Eoz =(eu(Z"-¢))- (£~ {c})-E"-(E = {c})-L°

Eog=c-Z°UL - (T - {C})

The expression E; which desciibes all framework mistakes is conceptually not difficult,
since the checking can all be done “locally”, i.e., the symbols to be checked are within
distance O(n?). This expression can be based on the ones given in [Furer80]. For these
reasons, we do not write £ in detail. For illustration, we write an expression for one type

14

of framework error where the marked binary numbers embedded in the computation a are
not incremented correctly. The relevant part of a word having the correct framework is

o (DD &Y ([4 1 mod 2YRYRHD

Lot D ={0,0,1,1}, and let r* = 7 .r*, Recalling that we can restrict attention to words
in R(tD | the following describes all “incrementing mistakes”:

n=1

U U zt-ot-ct-(D* .ty &t et - (DY) - (D - suce(o)) - cT - T
1=0 c€D

The interested reader can easily complete the construction of E; by writing expressions of
length O(n?) for the other types of framework errors.
The construction of F; is also straightforward and is left to the reader. a

Since the length of E; is O(n?), a lower bound on space complexity follows by a standard
argument (e.g., pg. 418 in [AHU74])).

Corollary 7.6 There is a constant ¢ > 1 such that no determimstic Turing machine with
space bound cV® can accepi NEC-{U,-,*,|} or INEQ-{U,-, =]}

Note that this lower bound (c¥™) does not match the upper bound (d*).
By using a coding like the one described in the proof of Lemma 5.4, it can be shown
that Theotem 7.1 and Corollary 7.6 remain true for expressions over an alphabet of size 3.

Acknowledgements: The first author wishes to thank his advisor Paris Kanellakis for the
help during this work and the “Alice Mayer Foundation for Gifted Swiss Students of Jewish
Hungarian Descent” for partial financial support.

References

[AHU74] A.V. AHo, J.E. HoPCROFT, AND J.D. ULLMAN, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, MA, 1974,

{Eilen74] S. EILENBERG, Automeate, Languages, and Machines, Vol. A, Academic Press,
New York, 1974.

Furer80] M. FURER, The complexity of the inequivalence problem for regular expressions
with intersection, Proc. 7th ICALP, Lecture Notes in Computer Science, Vol. 83,
Springer-Verlag, New York, 1980, pp. 234-245.

{HU79} J.E. HOPCROFT AND J.D. ULLMAN, [ntroduction io Automate Theory, Lan-
guages, end Computation, Addison-Wesley, Reading, MA, 1379.

(Hunt73) H.B. HuNT III, The equivalence problem for regular expressions with inter-

section is not polynomial in tape, Tech. Rep. TR 73-161, Cornell University,
1973.

15

[HRS76]

[IPC85)

[KS90}

[Miln80}

[Miln84]

[Stock74]

{StockT77]

[StM73]

[vLN82]

"Wrath77)

H.B. HuNT III, D.J. ROSENKRANTZ, AND T.G. SzYMANSKI, On the equiv-
alence, containment, and covering problems for -the regular and context-free
languages, J. Comput. System Sci. 12 (1976), 222-268.

O.H. IBARRA, M.A. Paris, aND J.H. CHANG, On efficient recognition of
transductions and relations, Theoretical Computer Science 39 (1985), 89-106.

P.C. KANELLAKIS AND S.A. SMOLKA, CCS expressions, finite state processes,

and three problems of equivalence, Infermation and Computation 86 (1990),
43-68.

R. MILNER, A Calculus of Communicating Systems, Lecture Notes in Computer

Science, Vol. 92, Springer-Verlag, New York, 1980:

R. MILNER, A complete inference system for a.class of regular behaviors, J.
Comput. System Sci. 28 (1984), 439-466.

L.J. STOCKMEYER, The complexity of decision problems in automata theory
and logic, Tech. Rep. TR-133, MIT, Project MAC, 1974.

L.J. STOCKMEYER, The polynomial-time hierarchy, Theoretical Computer Sci-
ence 3 (1977), 1-22.

»

L.J. STOCKMEYER AND A.R MEYER, Word problems requiring exponential
time, Proc. 5th ACM Symp. on Theory of Computing (1973), 1-9.

J. VAN LEEUWEN AND M. NivaT, Efficient recognition of rational relations,
Information Processing Letters 14 (1982), 34-38.

C. WRATHALL, Complete sets and the polynomial-time hieratchy, Theoretical
Computer Science 3 (1977), 23-33.

16

T~

[

